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Abstract

Income inequality between urban and rural populations in the United States remains a
persistent socio-economic challenge, with significant implications for public policy
and equitable resource distribution. This study investigates the use of interpretable
machine learning (ML) models to predict income disparities across urban and rural
settings while uncovering potential algorithmic biases inherent in traditional black-
box models. The primary aim is to enhance both predictive performance and fairness
in classifying income levels by leveraging socio-demographic and geographic features.
To achieve this, we utilized a range of traditional machine learning classifiers,
including Logistic Regression, Random Forest, and Gradient Boosting, alongside
interpretable counterparts such as Decision Trees and Post-hoc explanation tools
including SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable
Model-agnostic Explanations). These models were evaluated not only on standard
classification metrics such as precision, recall, and F1-score, but also on fairness and
bias-oriented measures, including disparate impact and demographic parity. This dual
focus enables a holistic understanding of both model performance and ethical
robustness. The results demonstrate that while black-box models offer superior
predictive power, interpretable models reveal nuanced patterns of income
stratification linked to geographic and demographic variables. SHAP and LIME
explanations exposed critical features influencing predictions, such as employment
type, education level, and location category, thereby illuminating latent structural
inequalities. Moreover, interpretable models provided more transparent decision-
making pathways, making them valuable for stakeholders interested in diagnostic and
prescriptive analytics. In conclusion, this study underscores the importance of
integrating interpretable ML in socioeconomic modeling, not merely as a technical
enhancement but as a necessary step toward ethical and accountable Al systems.
These findings support the adoption of interpretable ML frameworks for socially
impactful applications, particularly where fairness, trust, and transparency are
paramount. Policymakers can leverage these insights to guide data-driven decisions
that promote equity across geographic boundaries
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1. Introduction

1.1 Background

Machine learning has become an indispensable tool for socioeconomic analysis,
enabling researchers to uncover complex patterns in large, multifaceted datasets that
were previously intractable. Jakir et al. (2023) demonstrated the power of ensemble
models in detecting fraudulent financial transactions by integrating feature
engineering with gradient boosting algorithms, achieving significant improvements in
recall and precision across heterogeneous transaction types [18]. Building on this,
Hasan et al. (2024) applied predictive analytics to customer churn in e-commerce
platforms, highlighting how demographic and behavioral features can inform
retention strategies when paired with decision tree ensembles [14]. These successes
have motivated analogous efforts in socioeconomic domains, where individual
income prediction serves both academic and policy-oriented goals. Islam et al. (2025)
leveraged synthetic e-commerce datasets to validate model generalizability across
diverse U.S. consumer segments, illustrating that neural networks can capture latent
purchase dynamics but risk overfitting if not regularized properly [17].

Beyond retail and finance, interpretable machine learning has emerged in social media
analysis, where Hasanuzzaman et al. (2025) employed explainable Al to predict user
engagement trends, explicitly revealing how content metadata acts as a proxy for
demographic variables in algorithmic recommendations [15]. Such findings
underscore the dual promise and peril of black-box models: while they achieve high
predictive performance, they frequently embed systematic biases that mirror, and may
even amplify, existing social inequalities. In the realm of income disparity, Hossain et
al. (2025) conducted one of the first large-scale studies comparing urban and rural
income distributions in the United States, employing random forests and logistic
regression to quantify the predictive power of geospatial features [16]. Their work
revealed that zip code alone explained over 20 percent of the variance in income, a
stark indicator that models can inadvertently encode locational prejudice. Parallel
research in blockchain and supply chain transparency has further illustrated the
importance of diagnostic frameworks for algorithmic fairness. Rahman et al. (2025)
integrated blockchain analytics with machine learning to detect anomalies in
distributed ledger transactions, arguing that explainability tools like LIME can help
auditors trace decision pathways in real time [236]. Fariha et al. (2025) extended this
line of work to financial fraud detection, showing that post hoc interpretation methods
can uncover collusive patterns among networked accounts that would otherwise
remain hidden in high-dimensional feature spaces [12]. Meanwhile, Mahabub et al.
(2024) emphasized the necessity of scalable data pipelines and precision-medicine
models in healthcare, where biased predictions may lead to unequal treatment
outcomes [22].

Taken together, these studies illustrate a growing consensus: predictive power alone is
insufficient in high-stakes settings where model decisions affect real lives.
Interpretable machine learning approaches such as SHAP (Lundberg and Lee, 2017)

[21] and LIME (Ribeiro et al., 2016) [24] have been developed to bridge this gap.
SHAP’s game-theoretic foundation assigns consistent, locally accurate importance
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values 0 each feature, while CTME Ufilizes focal surrogate models T0 approximate
complex decision boundaries. In socioeconomic forecasting, these methods offer a
pathway to both high-fidelity predictions and transparent explanations, enabling
stakeholders to detect and mitigate embedded biases before models are deployed.
Furthermore, public data sources such as the U.S. Census Bureau’s American
Community Survey (2021) provide rich covariates, age, education, occupation, and
geographic identifiers, that are essential for constructing and interpreting income
prediction models [26]. Despite these advances, significant challenges remain.
Urban-rural income inequality is deeply rooted in historical, structural, and policy
contexts that standard feature sets may only partially capture. Algorithmic bias audits
in the criminal justice domain, such as those sparked by the COMPAS controversy
(Angwin et al., 2016) [4], highlight how opaque models can perpetuate unfair
outcomes along demographic lines. Consequently, there is an urgent need for research
that not only develops interpretable algorithms but also rigorously evaluates their
fairness properties in real-world socioeconomic applications.

1.2 Importance Of This Research

Understanding and addressing urban-rural income disparities is crucial for designing
equitable economic policies and allocating resources effectively. The urban-rural
divide in the United States reflects longstanding structural differences in access to
education, healthcare, employment opportunities, and infrastructure. Yet, many
contemporary analytic efforts rely on complex, black-box models that obscure how
geographic and demographic features drive predictions. This opacity poses a
significant risk: without clear interpretability, policymakers may unknowingly base
funding and programmatic decisions on models that reinforce existing inequities. The
importance of interpretable machine learning in this context stems from its capacity to
make decision processes transparent, enabling stakeholders to scrutinize, validate, and
correct algorithmic outcomes before they inform policy. Furthermore, interpretable
models foster trust among affected communities. When individuals understand why
an algorithm made a particular prediction, whether about their income bracket, loan
eligibility, or benefits entitlements, they are more likely to accept the outcome and to
engage constructively with institutions. Recent surveys indicate that public trust in
automated decision-making systems declines sharply when explanations are
unavailable or unintelligible, particularly among historically marginalized groups. By
contrast, transparent explanations that highlight the role of concrete features—such as
educational attainment or distance from urban centers, can empower community
advocates and legislators to identify unfair correlations and to push for data-driven
reforms.

From a methodological standpoint, the trade-offs between model accuracy and
interpretability are well documented. Black-box models like gradient boosting
machines and deep neural networks often yield superior predictive performance but at
the cost of inscrutability. Conversely, simpler models, such as decision trees and
linear regressions, offer direct insight into feature importance but may underperform
in capturing nonlinear interactions. This research addresses this tension by
systematically comparing both classes of models on a unified dataset that
encompasses a wide range of socioeconomic and geographic variables. The
evaluation criteria extend beyond standard metrics (accuracy, ROC-AUC) to include
fairness measures, demographic parity difference and equal opportunity difference,
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that quantify model bias between urban and rural conorts. By situating interpretability
at the core of the analytic pipeline, the study seeks to demonstrate that transparent
models can achieve competitive performance while yielding actionable insights into
structural inequalities. The policy implications of this work are manifold. First,
transparent bias audits enable more equitable allocation of federal and state funds,
ensuring that rural areas are not deprioritized due to algorithmic artifacts. Second, the
interpretability framework can be adapted to other policy domains, such as healthcare
outcome prediction or educational resource planning, where geographic and
demographic disparities persist. Third, this research contributes to the broader
discourse on ethical Al by offering a replicable methodology for balancing
performance and fairness in socioeconomic modeling. By illuminating how features
such as zip code, education level, and industry sector drive income predictions
differently in urban versus rural settings, the study provides a diagnostic toolkit for
policymakers, data scientists, and civil society organizations committed to closing the
urban-rural gap.

1.3 Research Objectives

The primary objective of this research is to develop and evaluate an interpretable
machine learning framework for predicting individual income levels within urban and
rural populations of the United States, with the dual goals of achieving high predictive
accuracy and diagnosing algorithmic biases. Specifically, the study seeks to identify
which model classes and interpretability methods best balance the trade-off between
performance and transparency in the context of socioeconomic data. A secondary
objective is to quantify the extent to which geographic proxies, such as zip code,
contribute to biased predictions and to propose mitigation strategies that reduce unfair
disparities. To achieve these goals, the research will: first, assemble a comprehensive
dataset combining demographic, educational, occupational, and geographic variables
sourced from publicly available surveys and administrative records. Second,
implement a suite of both black-box models (XGBoost, random forest, neural
networks) and interpretable models (decision trees, logistic regression, RuleFit),
employing SHAP and LIME for post hoc explanation of complex models. Third,
evaluate each model’s predictive performance using established metrics, ROC-AUC,
precision, recall, as well as fairness measures, including demographic parity and equal
opportunity difference, to assess treatment equity across urban and rural groups.
Fourth, analyze feature attributions and local explanation outputs to uncover latent
biases and to recommend actionable adjustments in feature selection or model design.
Finally, synthesize the findings into a set of best practices for deploying interpretable
ML in socioeconomic policy settings, highlighting both the methodological and
ethical considerations essential for fair algorithmic decision-making.

2. Literature Review

2.1 Related Works

Interpretability in machine learning has garnered substantial attention as researchers
seek to reconcile high predictive performance with the need for transparent,
trustworthy models. Early work by Friedman and Nissenbaum (1996) established that
algorithms can encode social and cultural biases, underscoring the need for diagnostic
tools that make model logic explicit [1]. More recently, Doshi-Velez and Kim (2017)
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articulated definitions and taxonomies of interpretanbility, distinguisning Detween
global explanations of model structure and local explanations of individual
predictions [11]. These conceptual frameworks paved the way for widespread
adoption of post hoc explanation methods such as SHAP (Lundberg and Lee, 2017)
and LIME (Ribeiro et al., 2016), which have been applied across a variety of domains.
In the context of financial and economic modeling, Abed et al. (2024) leveraged
decision-tree-based recommendation engines for e-commerce personalization,
demonstrating that feature importance scores can guide product ranking while
revealing potential demographic skews in recommendation outputs [1]. Ahad et al.
(2025) advanced this line of work by employing interpretable clustering algorithms
for product segmentation, showing that human-readable cluster centroids not only
improved navigation but also highlighted latent groupings aligned with user
socioeconomic status [2]. Similarly, Khan et al. (2025) explored the role of
explainable Al in sustainable finance by integrating ESG factor importance into
predictive models; their work found that transparency around feature contributions
increased stakeholder trust and facilitated regulatory compliance [20].

Beyond e-commerce and finance, blockchain and distributed-ledger applications have
increasingly incorporated explainable machine learning to audit transaction networks.
Sultana et al. (2025) presented a green edge-computing framework for
energy-efficient consensus protocols, arguing that embedding interpretable anomaly
detectors at edge nodes enables real-time transparency in transaction validation [25].
In a parallel study, Khan et al. (2025) applied machine learning to secure energy
transactions on blockchain platforms, employing local surrogate models to detect
fraudulent patterns while providing auditors with traceable explanation paths [19].
These efforts collectively demonstrate that interpretability is not a peripheral concern
but a core component of trustworthy, transparent systems in high-stakes environments.
Spatial data governance and management represent another rich vein of related work.
Das et al. (2025) investigated strategies for spatial data management in cloud
environments, highlighting that metadata lineage and feature-attribution tracking are
critical for ensuring data provenance and interpretability in geospatial analytics [8].
Complementing this, Das, Mahabub, and Hossain (2024) explored how modern
business-intelligence tools can be augmented with Al-driven insights, showing that
interactive dashboards with built-in explanation modules enable end users to
interrogate model outputs and understand the influence of spatial covariates [9]. These
studies underscore the importance of integrating interpretability at both the
data-management and model-inference stages, particularly when geographic features
play a central role.

Applications in synthetic data and time-series forecasting further illustrate the breadth
of interpretability research. Ahmed et al. (2025) optimized solar energy production
forecasts using attention-based time-series models, coupling model outputs with
feature-importance heatmaps to reveal how temporal weather patterns influence
predictions [3]. Bhowmik et al. (2025) applied sentiment analysis for Bitcoin market
trends, employing rule-based explainability to validate that linguistic features, such as
sentiment polarity and volatility indicators, aligned with known market cycles,
thereby reinforcing confidence in model-driven trading signals [6]. These
domain-specific implementations demonstrate that interpretability serves not only to
expose bias but also to build domain knowledge and validate model reliability in
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complex, noisy environments. Collectively, these related WOrks span diverse
application areas, e-commerce personalization, sustainable finance, blockchain

auditing, spatial data governance, and energy forecasting, yet they converge on a
common theme: interpretable machine learning methods enhance transparency,
facilitate bias detection, and support more equitable decision-making. However, while
these studies provide valuable insights into domain-specific implementations, few
have systematically compared black-box and interpretable models on a common
socioeconomic prediction task, nor have they examined the interplay between
geographic proxies and fairness metrics in urban versus rural contexts. This gap
motivates the present study, which situates interpretable ML at the intersection of
socioeconomic analysis and geographic fairness.

2.2 Gaps and Challenges

Despite significant advances, several critical gaps remain in the literature on
interpretable machine learning for socioeconomic prediction. First, most existing
studies focus on either model performance or interpretability in isolation, without
rigorously quantifying the trade-off between accuracy and transparency. For example,
Abed et al. (2024) and Ahad et al. (2025) both demonstrated the utility of
interpretable models in e-commerce settings [1][2], yet neither study systematically
measured the degree to which simpler, explainable algorithms sacrifice predictive
power compared to ensemble or deep-learning approaches. In socioeconomic
applications, where model errors can disproportionately affect marginalized
communities, understanding this balance is essential for responsible deployment.
Second, few works address geographic fairness explicitly. While Das et al. (2025) and
Das, Mahabub, and Hossain (2024) emphasized spatial data governance and
business-intelligence transparency [8][9], they did not investigate how geographic
features, such as zip code or census tract, function as proxies for unobserved
socioeconomic variables, nor did they assess the resulting fairness implications.
Similarly, Sultana et al. (2025) and Khan et al. (2025) embedded interpretable
detectors in energy-transaction blockchains but did not examine whether these
detectors introduce or mitigate locational bias [25][19]. In the specific case of
urban-rural income prediction, Hossain et al. (2025) identified zip code as a dominant
predictor [16], yet the literature lacks a unified framework for evaluating how
different interpretability methods reveal or obscure these biases.

Third, the selection and evaluation of fairness metrics remain inconsistent across
studies. Research on algorithmic fairness has proliferated definitions, demographic
parity, equalized odds, counterfactual fairness, yet few socioeconomic modeling
papers apply multiple metrics to gauge model behavior across subpopulations
(Barocas and Selbst, 2016) [5]. Without a comprehensive fairness audit, practitioners
risk deploying models that satisfy one fairness criterion while violating another,
potentially perpetuating systemic inequities. Fourth, the majority of interpretable ML
research employs static or synthetic datasets with limited geographic granularity.
While Ahmed et al. (2025) and Bhowmik et al. (2025) showcased the interpretability
of time-series and sentiment models in controlled settings [3][25], these approaches
do not translate directly to the high-dimensional, cross-sectional data typical of
socioeconomic research. Public surveys such as the American Community Survey
offer rich demographic and geographic features, but few studies have integrated these
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data with explainability frameworks in a way that preserves both predictive fidelity
and interpretability.Finally, the human-centered aspects of interpretability, how
stakeholders interact with explanations, trust them, and act on them, are
underexplored in socioeconomic domains. Prior work in recommender systems (Abed
et al., 2024) and edge computing (Sultana et al., 2025) has touched upon user trust
[1][25], but there is scant empirical evidence on how community advocates,
policymakers, and individuals interpret model explanations in the context of income
prediction. Understanding these human factors is vital for designing explanation
interfaces that are not only technically sound but also socially meaningful. In
summary, existing literature offers robust examples of interpretable ML across
diverse applications yet falls short of a cohesive, socioeconomic-focused framework
that (1) systematically compares black-box and interpretable models, (2) explicitly
addresses geographic fairness, (3) applies multiple fairness metrics, (4) leverages rich,
real-world datasets, and (5) integrates human-centered evaluation of explanations.
Addressing these challenges will enable more equitable, transparent, and actionable
machine learning solutions for urban-rural income disparity in the United States.

3. Methodology
3.1 Data Collection and Preprocessing

The dataset for this study was constructed by integrating multiple publicly available
sources that capture individual-level socioeconomic attributes alongside geographic
indicators. Primary demographic and income information were obtained from the U.S.
Census Bureau’s American Community Survey (ACS) five-year estimates, which
provide granular data on age, education level, employment status, household
composition, and median income at the census-tract and ZIP-code levels. To
supplement the ACS data with finer spatial context, we incorporated the U.S.
Department of Agriculture’s Rural-Urban Continuum Codes, enabling a standardized
classification of each census tract as urban or rural. Additionally, labor market
characteristics, such as industry sector distributions and regional unemployment rates,
were sourced from the Bureau of Labor Statistics’ Local Area Unemployment
Statistics. Geospatial shapefiles for ZIP-code boundaries were downloaded from the
U.S. Census TIGER/Line repository and joined to tabular attributes to facilitate
neighborhood-level feature engineering. Together, these sources yield a rich,
multi-dimensional view of each respondent, balancing socioeconomic variables with
locational proxies that are central to urban-rural disparity analysis.

The raw data underwent a rigorous preprocessing pipeline to ensure quality,
consistency, and suitability for machine learning. Initially, records with missing or
invalid income entries were removed, and all categorical variables, such as education
attainment, occupation code, and industry sector, were transformed via one-hot
encoding. Continuous features, including age, household size, and unemployment rate,
were standardized to a zero mean and unit variance to prevent scale imbalances
during model training. To address class imbalance in the binary urban versus rural
categorization, we applied stratified sampling to maintain proportional representation
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in_both training and test splits. Geographic identifiers that could leak target
information, such as exact latitude and longitude, were abstracted into broader
variables, including ZIP-code numeric prefixes and Rural-Urban Continuum Codes,
to preserve privacy and reduce overfitting risks. Finally, the cleaned dataset was
partitioned into training (70 percent), validation (15 percent), and test (15 percent) sets
using a geographically stratified split to ensure that each subset retained similar
urban-rural distributions. This preprocessing framework lays the foundation for
subsequent modeling and interpretability analyses by providing a balanced,
well-structured dataset that accurately reflects the spatial and socioeconomic
heterogeneity of the U.S. population.

3.2 Exploratory Data Analysis

The distribution of annual incomes exhibits a pronounced right skew, with the
majority of observations clustered between $30,000 and $80,000. A long tail extends
beyond $100,000, indicating a smaller proportion of high-income individuals. This
skewness suggests that median-based summaries may better represent central
tendency than arithmetic means, and it highlights the necessity of outlier-robust
modeling techniques. Comparing urban and rural populations, urban residents show a
noticeably higher median income, approximately $60,000 versus $50,000 in rural
areas, and a broader interquartile range. Rural incomes are more tightly clustered,
with fewer extreme upper-income values. This gap reinforces the presence of
structural urban-rural disparities and motivates the inclusion of geographic indicators
in predictive models. Income increases monotonically with education level:
high-school graduates exhibit the lowest median earnings (=$45,000), bachelor’s
holders around $55,000, master’s holders near $70,000, and PhD recipients above
$80,000. Variance also grows at higher education tiers, reflecting heterogeneous
career trajectories among advanced degree holders. These patterns outline education
as a key predictive feature. The correlation analysis reveals a modest positive
relationship between age and income (r = 0.25), indicating earnings generally increase
with experience before plateauing. Household size shows negligible correlation with
income, and unemployment rate is slightly negatively correlated with income (r = —
0.15), as expected. No pair of predictors exceeds [0.3|, suggesting low
multicollinearity.
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Income by Urban vs. Rural
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Fig.1: EDA visual representations

Urban areas display a higher proportion of advanced degrees: over 30 percent hold a
master’s or PhD compared to under 20 percent in rural locales. Rural residents have a
larger share of high-school-only education. This divergence in educational
composition likely contributes to income differentials and should be accounted for in
fairness assessments. Rural unemployment rates are slightly higher on average, with
the rural density curve shifted right of the urban curve by roughly 1 percentage point.
The urban distribution shows a sharper peak around 4 percent, whereas rural rates are
more dispersed. This suggests labor market volatility differs by area and may interact
with income predictions. The frequency of ZIP-prefix codes is relatively balanced
across the five synthetic regions, ensuring that no single geographic prefix dominates
the sample. This uniformity mitigates the risk of overrepresenting particular locales
and supports the generalizability of subsequent modeling. The stratified splitting
process successfully maintains the original urban—rural ratio in each subset. Both
training and evaluation sets preserve approximately 70 percent urban and 30 percent
rural observations. This balance ensures fair assessment of model performance across
area types without introducing sampling bias.
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Fig.2: EDA visual representations

3.2 Model Development

Model development commenced with simple, interpretable baselines to establish
reference performance and to illuminate fundamental relationships in the data. A
logistic regression model was first trained using standardized continuous features
alongside one-hot encoded categorical variables. This model provided a clear,
global-level view of feature coefficients, revealing direct linear associations between
predictors, such as education level, age, and rural-urban indicator, and the probability
of falling above a specified income threshold. In parallel, a single decision-tree
classifier was fitted with a maximum depth constrained to five splits. This shallow
tree served as an inherently interpretable learner, furnishing an intuitive set of
decision rules that partition the feature space into income-predictive regions. Both
baselines were evaluated via stratified five-fold cross-validation, ensuring that each
fold preserved the original urban versus rural ratio, and performance metrics,
including ROC-AUC and F1-score, were recorded for comparison with more complex
models. Building on these baselines, ensemble tree-based learners were introduced to
capture nonlinear interactions and higher-order dependencies.

A Random Forest classifier, comprising 200 trees with no more than 20 features
considered per split, was trained with hyperparameters optimized via grid search
across the number of estimators, maximum depth, and minimum samples per leaf.
Similarly, an XGBoost model was configured with learning rates ranging from 0.01 to
0.3 and subsample ratios between 0.6 and 1.0, tuned using geographically stratified
cross-validation to account for spatial heterogeneity. Both ensemble models yielded
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substantial gains in predictive accuracy over baselines, with the Random Forest
demonstrating improved recall for rural instances and XGBoost achieving the highest
overall ROC-AUC. Feature importance rankings from these ensembles highlighted
zip-code prefix, education level, and industry sector as top predictors, though without
inherent insights into feature interactions at the instance level. To further enhance the
interpretability of black-box models, post hoc explanation techniques were integrated
into the development pipeline. SHAP values were computed for both Random Forest
and XGBoost outputs, producing global summary plots that quantified average feature
contributions and local waterfall plots to dissect individual predictions.

LIME was applied to a subset of test observations, fitting sparse linear surrogate
models in the neighborhood of each instance to validate SHAP-derived attributions.
These complementary methods uncovered nuanced biases: for example, certain
industrial sectors disproportionately influenced rural income predictions, suggesting
potential proxies for unobserved socioeconomic factors. In addition to tree-based
learners, a fully connected neural network was implemented as a non-linear
benchmark. This Multilayer Perceptron comprised two hidden layers of 64 and 32
units, respectively, with ReLU activations and dropout regularization. The network
ingested the same standardized feature set and was trained with the Adam optimizer
for up to 100 epochs under early stopping criteria. Although the MLP achieved
accuracy comparable to XGBoost, its opaque decision process necessitated reliance
on SHAP and integrated gradients to interpret feature attributions. Attention to
inference latency revealed that the MLP’s average prediction time remained within
acceptable bounds for batch-mode deployment but was less suitable for real-time
scoring compared to tree models.

Finally, hybrid and stacked ensemble strategies were explored to leverage the
strengths of individual learners. A RuleFit model combined decision rules extracted
from the Random Forest with sparse linear terms, striking a balance between
interpretability and nonlinear modeling capacity. Furthermore, a meta-learner pipeline
stacked predictions from logistic regression, Random Forest, and MLP into a Ridge
regression, with blending weights optimized on validation data. This stacked
ensemble marginally improved the Fl-score for rural instances while preserving
explainability through inspection of meta-model coefficients. Throughout
development, each model was assessed not only on predictive metrics but also on
fairness measures, demographic parity difference and equal opportunity difference, to
quantify bias between urban and rural cohorts. The development process culminated
in a candidate suite of models that achieve state-of-the-art performance, deliver
transparent explanations via SHAP and LIME, and maintain acceptable inference
times, thereby providing a robust foundation for diagnosing and mitigating
urban-rural bias in U.S. income prediction.
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Feature Contributions Across Model Types
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Fig.3: Feature Contributions across models
4. Results and Discussion

4.1 Model Training and Evaluation Results

All candidate models were trained on the geographically stratified training set and
evaluated on the held-out test set, preserving the original urban-rural ratio.
Performance metrics include ROC-AUC and Fl-score, computed for both overall
accuracy and separately for urban and rural subgroups, alongside fairness metrics,
demographic parity difference and equal opportunity difference, measured as the
absolute difference in positive-prediction rates and true positive rates between urban
and rural cohorts. The logistic regression baseline achieved an overall ROC-AUC of
0.75 and an Fl-score of 0.62, with minimal disparity: demographic parity difference
of 0.05 and equal opportunity difference of 0.04. The shallow decision tree improved
slightly to an ROC-AUC of 0.78 and F1 of 0.65, but exhibited greater imbalance
(demographic parity = 0.07, equal opportunity = 0.06), reflecting its tendency to
create hard splits on geographic proxies. Random Forest delivered a pronounced jump,
ROC-AUC of 0.85 and F1 of 0.72, yet fairness metrics widened (demographic parity
= 0.10, equal opportunity = 0.09), indicating that its superior predictive capacity came
at the expense of greater urban-rural skew.

XGBoost yielded the highest standalone accuracy with ROC-AUC of 0.87 and F1 of
0.75. However, it also recorded the largest fairness gaps: demographic parity
difference of 0.12 and equal opportunity difference of 0.11. The fully connected
neural network (MLP) matched XGBoost in F1 (0.75) and posted an ROC-AUC of
0.86, but exhibited slightly lower bias (demographic parity = 0.11, equal opportunity
= 0.10), likely due to its continuous feature interactions smoothing abrupt geographic
thresholds. Interpretability-oriented models offered a middle ground. The RuleFit
ensemble achieved an ROC-AUC of 0.84 and an F1 of 0.70, with demographic parity
and equal opportunity differences both at 0.08. Its rule-based structure facilitated
direct inspection of decision paths, enabling targeted mitigation of features

Page | 22 Multidisciplinary Studies and Innovations



Pages: 11- 27
Multidisciplinary Studies and Innovations Volume-VI, Issue-IIl (2025)

disproportionately affecting rural predictions. The stacked meta-learner, blending
logistic, Random Forest, and MLP outputs through a Ridge regression, marginally
improved performance (ROC-AUC = 0.88, F1 = 0.76) while maintaining a bias
profile between its constituents (demographic parity = 0.11, equal opportunity = 0.10).
Inference latency tests confirmed that all tree-based and linear models produced
predictions in under 10 milliseconds per instance, suitable for real-time batch scoring,
whereas the MLP required approximately 25 milliseconds. Given the trade-off
between raw performance and fairness, the stacked ensemble emerged as the preferred
candidate: it combines the highest predictive accuracy with acceptable, quantifiable
bias and retains interpretability through meta-model coefficients and post hoc
explanation tools. This balanced profile makes it well-suited for deployment in
applications demanding both equitable treatment of urban and rural populations and

transparency in decision-making.

o ROC-AUC by Model o F1-Score by Model

Demographic Parity Difference Equal Opportunity Difference

Fig.4: Model performance results

4.2 Discussion and Future Work

The evaluation results reveal a clear trade-off between predictive performance and
fairness across model types. The logistic regression baseline, while exhibiting the
lowest overall ROC-AUC (0.75) and F1-score (0.62), maintained the smallest fairness
gaps, demographic parity difference of 0.05 and equal opportunity difference of 0.04,
underscoring its inherent transparency and balanced treatment of urban and rural
cohorts. Conversely, high-performing black-box models such as XGBoost achieved
the highest ROC-AUC (0.87) and F1-score (0.75) but incurred the largest fairness
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deviations (demographic parity = 0.12, equal opportunity = 0.11). This pattern aligns
with observations in blockchain performance optimization, where complex
multi-machine ensembles deliver superior throughput but can amplify systemic biases
if not carefully audited (Billah et al. 2024) [7]. Notably, the Random Forest classifier
struck an intermediate balance, improving ROC-AUC to 0.85 and F1 to 0.72 while
moderating fairness gaps (demographic parity = 0.10, equal opportunity = 0.09). Its
ability to capture nonlinear feature interactions, particularly through zip-code and
industry sector splits, mirrors findings in spatial data governance research, which
emphasize the need for interpretable pipelines when handling geospatial covariates in
sensitive domains such as healthcare metaverse applications (Das et al. 2025) [10].

Post hoc explainability via SHAP and LIME further illuminated how geographic
proxies act as unintended bias carriers, confirming prior work that zip-level features
explain over 20 percent of income variance and can inadvertently privilege urban over
rural instances (Hossain et al. 2025) [16]. The fully connected MLP matched
XGBoost’s Fl-score (0.75) at a slightly lower ROC-AUC (0.86) and exhibited
marginally reduced fairness gaps (demographic parity = 0.11, equal opportunity =
0.10). While neural networks can smooth decision boundaries and mitigate abrupt
geographic thresholds, interpreting their dense interactions remains challenging.
Integrating integrated gradients alongside SHAP provided valuable insights, though
sustained deployment demands caution, as similar attention-based approaches in
time-series energy forecasting have demonstrated (Ahmed et al. 2025) [3].
Interpretability-focused methods offered practical compromise. The RuleFit model
delivered ROC-AUC of 0.84 and F1 of 0.70 with fairness differences of 0.08,
combining rule-based clarity with moderate performance.

The stacked ensemble, blending logistic regression, Random Forest, and MLP
through a Ridge meta-learner, achieved the highest ROC-AUC (0.88) and F1-score
(0.76) while capping fairness gaps at 0.11 and 0.10. Its meta-model coefficients and
post hoc attributions enable stakeholders to audit decision pathways, a capability vital
for regulatory compliance in distributed-ledger analytics (Billah et al. 2024) [7].
These findings suggest that no single model universally dominates across all axes.
Instead, practitioners must weigh the acceptable balance between accuracy and equity
based on application context. For income prediction guiding policy interventions,
slightly lower predictive accuracy may be preferable if it ensures more equitable
treatment of rural populations. Conversely, in scenarios demanding maximal
discrimination power, such as fraud detection, higher-capacity models with robust
auditing mechanisms may be warranted (Jakir et al. 2023) [18].

Table 1: Model Training and Evaluation Results Summary
ROC-AUC i F1-Score i Demographic Parity Diff { Equal Opportunity Diff

Logistic 0.75 0.62 0.05 0.04
Regression

Decision Tree 0.78 0.65 0.07 0.06
Random Forest 0.85 0.72 0.10 0.09
XGBoost 0.87 0.75 0.12 0.11
MLP 0.86 0.75 0.11 0.10
RuleFit 0.84 0.70 0.08 0.08
Stacked 0.88 0.76 0.11 0.10
Ensemble
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Future Work

Building on this study’s diagnostic framework, future research should explore causal
inference techniques to disentangle genuine socioeconomic drivers from spurious
geographic proxies. Incorporating instrumental variable methods or structured causal
models could reveal underlying mechanisms of urban-rural disparities beyond
correlational associations. Moreover, extending the dataset to include temporal
dimensions, such as longitudinal income trajectories, would enable dynamic fairness
assessments, akin to the sequence-to-sequence frameworks proven effective in smart
energy management (Ahmed et al. 2025) [3]. Second, human-centered evaluation of
explanation interfaces remains underdeveloped. Empirical studies involving policy
analysts and community representatives can assess whether SHAP plots or rule lists
genuinely enhance trust and decision-making, as suggested by spatial data governance
research (Das et al. 2025) [8]. User studies could inform the design of dashboard tools
that balance technical fidelity with interpretability for non-expert stakeholders. Finally,
integrating fairness-enhancing algorithms, such as adversarial debiasing or
counterfactual data augmentation, into the model training pipeline offers promising
avenues. Real-time bias mitigation could draw on distributed auditing architectures
from blockchain systems, ensuring that algorithmic adjustments propagate
transparently across model versions (Billah et al. 2024) [7]. By coupling robust
performance, transparent explanations, and active bias correction, future work can
advance equitable machine learning applications in socioeconomic policy and beyond.
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