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Abstract 

 

Income inequality between urban and rural populations in the United States remains a 

persistent socio-economic challenge, with significant implications for public policy 

and equitable resource distribution. This study investigates the use of interpretable 

machine learning (ML) models to predict income disparities across urban and rural 

settings while uncovering potential algorithmic biases inherent in traditional black-

box models. The primary aim is to enhance both predictive performance and fairness 

in classifying income levels by leveraging socio-demographic and geographic features. 

To achieve this, we utilized a range of traditional machine learning classifiers, 

including Logistic Regression, Random Forest, and Gradient Boosting, alongside 

interpretable counterparts such as Decision Trees and Post-hoc explanation tools 

including SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable 

Model-agnostic Explanations). These models were evaluated not only on standard 

classification metrics such as precision, recall, and F1-score, but also on fairness and 

bias-oriented measures, including disparate impact and demographic parity. This dual 

focus enables a holistic understanding of both model performance and ethical 

robustness. The results demonstrate that while black-box models offer superior 

predictive power, interpretable models reveal nuanced patterns of income 

stratification linked to geographic and demographic variables. SHAP and LIME 

explanations exposed critical features influencing predictions, such as employment 

type, education level, and location category, thereby illuminating latent structural 

inequalities. Moreover, interpretable models provided more transparent decision-

making pathways, making them valuable for stakeholders interested in diagnostic and 

prescriptive analytics. In conclusion, this study underscores the importance of 

integrating interpretable ML in socioeconomic modeling, not merely as a technical 

enhancement but as a necessary step toward ethical and accountable AI systems. 

These findings support the adoption of interpretable ML frameworks for socially 

impactful applications, particularly where fairness, trust, and transparency are 

paramount. Policymakers can leverage these insights to guide data-driven decisions 

that promote equity across geographic boundaries 
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1. Introduction 

 
1.1 Background 

 

Machine learning has become an indispensable tool for socioeconomic analysis, 

enabling researchers to uncover complex patterns in large, multifaceted datasets that 

were previously intractable. Jakir et al. (2023) demonstrated the power of ensemble 

models in detecting fraudulent financial transactions by integrating feature 

engineering with gradient boosting algorithms, achieving significant improvements in  

recall and precision across heterogeneous transaction types [18]. Building on this, 

Hasan et al. (2024) applied predictive analytics to customer churn in e‑commerce 

platforms, highlighting how demographic and behavioral features can inform 

retention strategies when paired with decision tree ensembles [14]. These successes 

have motivated analogous efforts in socioeconomic domains, where individual 

income prediction serves both academic and policy-oriented goals. Islam et al. (2025) 

leveraged synthetic e‑commerce datasets to validate model generalizability across 

diverse U.S. consumer segments, illustrating that neural networks can capture latent 

purchase dynamics but risk overfitting if not regularized properly [17]. 

 

Beyond retail and finance, interpretable machine learning has emerged in social media 

analysis, where Hasanuzzaman et al. (2025) employed explainable AI to predict user 

engagement trends, explicitly revealing how content metadata acts as a proxy for 

demographic variables in algorithmic recommendations [15]. Such findings 

underscore the dual promise and peril of black‑box models: while they achieve high 

predictive performance, they frequently embed systematic biases that mirror, and may 

even amplify, existing social inequalities. In the realm of income disparity, Hossain et 

al. (2025) conducted one of the first large‑scale studies comparing urban and rural 

income distributions in the United States, employing random forests and logistic 

regression to quantify the predictive power of geospatial features [16]. Their work 

revealed that zip code alone explained over 20 percent of the variance in income, a 

stark indicator that models can inadvertently encode locational prejudice. Parallel 

research in blockchain and supply chain transparency has further illustrated the 

importance of diagnostic frameworks for algorithmic fairness. Rahman et al. (2025) 

integrated blockchain analytics with machine learning to detect anomalies in 

distributed ledger transactions, arguing that explainability tools like LIME can help 

auditors trace decision pathways in real time [236]. Fariha et al. (2025) extended this 

line of work to financial fraud detection, showing that post hoc interpretation methods 

can uncover collusive patterns among networked accounts that would otherwise 

remain hidden in high‑dimensional feature spaces [12]. Meanwhile, Mahabub et al. 

(2024) emphasized the necessity of scalable data pipelines and precision‑medicine 

models in healthcare, where biased predictions may lead to unequal treatment 

outcomes [22]. 

 

Taken together, these studies illustrate a growing consensus: predictive power alone is 

insufficient in high‑stakes settings where model decisions affect real lives. 

Interpretable machine learning approaches such as SHAP (Lundberg and Lee, 2017)  

 

[21] and LIME (Ribeiro et al., 2016) [24] have been developed to bridge this gap. 

SHAP’s game‑theoretic foundation assigns consistent, locally accurate importance 
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values to each feature, while LIME utilizes local surrogate models to approximate 

complex decision boundaries. In socioeconomic forecasting, these methods offer a 

pathway to both high-fidelity predictions and transparent explanations, enabling 

stakeholders to detect and mitigate embedded biases before models are deployed. 

Furthermore, public data sources such as the U.S. Census Bureau’s American 

Community Survey (2021) provide rich covariates, age, education, occupation, and 

geographic identifiers, that are essential for constructing and interpreting income 

prediction models [26]. Despite these advances, significant challenges remain. 

Urban‑rural income inequality is deeply rooted in historical, structural, and policy 

contexts that standard feature sets may only partially capture. Algorithmic bias audits 

in the criminal justice domain, such as those sparked by the COMPAS controversy 

(Angwin et al., 2016) [4], highlight how opaque models can perpetuate unfair 

outcomes along demographic lines. Consequently, there is an urgent need for research 

that not only develops interpretable algorithms but also rigorously evaluates their 

fairness properties in real‑world socioeconomic applications. 

 

1.2 Importance Of This Research 
 

Understanding and addressing urban‑rural income disparities is crucial for designing 

equitable economic policies and allocating resources effectively. The urban‑rural 

divide in the United States reflects longstanding structural differences in access to 

education, healthcare, employment opportunities, and infrastructure. Yet, many 

contemporary analytic efforts rely on complex, black‑box models that obscure how 

geographic and demographic features drive predictions. This opacity poses a 

significant risk: without clear interpretability, policymakers may unknowingly base 

funding and programmatic decisions on models that reinforce existing inequities. The 

importance of interpretable machine learning in this context stems from its capacity to 

make decision processes transparent, enabling stakeholders to scrutinize, validate, and 

correct algorithmic outcomes before they inform policy. Furthermore, interpretable 

models foster trust among affected communities. When individuals understand why 

an algorithm made a particular prediction, whether about their income bracket, loan 

eligibility, or benefits entitlements, they are more likely to accept the outcome and to 

engage constructively with institutions. Recent surveys indicate that public trust in 

automated decision‑making systems declines sharply when explanations are 

unavailable or unintelligible, particularly among historically marginalized groups. By 

contrast, transparent explanations that highlight the role of concrete features—such as 

educational attainment or distance from urban centers, can empower community 

advocates and legislators to identify unfair correlations and to push for data‑driven 

reforms. 

 

From a methodological standpoint, the trade‑offs between model accuracy and 

interpretability are well documented. Black‑box models like gradient boosting 

machines and deep neural networks often yield superior predictive performance but at 

the cost of inscrutability. Conversely, simpler models, such as decision trees and 

linear regressions, offer direct insight into feature importance but may underperform 

in capturing nonlinear interactions. This research addresses this tension by 

systematically comparing both classes of models on a unified dataset that 

encompasses a wide range of socioeconomic and geographic variables. The 

evaluation criteria extend beyond standard metrics (accuracy, ROC‑AUC) to include 

fairness measures, demographic parity difference and equal opportunity difference, 
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that quantify model bias between urban and rural cohorts. By situating interpretability 

at the core of the analytic pipeline, the study seeks to demonstrate that transparent 

models can achieve competitive performance while yielding actionable insights into 

structural inequalities. The policy implications of this work are manifold. First, 

transparent bias audits enable more equitable allocation of federal and state funds, 

ensuring that rural areas are not deprioritized due to algorithmic artifacts. Second, the 

interpretability framework can be adapted to other policy domains, such as healthcare  

outcome prediction or educational resource planning, where geographic and 

demographic disparities persist. Third, this research contributes to the broader 

discourse on ethical AI by offering a replicable methodology for balancing 

performance and fairness in socioeconomic modeling. By illuminating how features 

such as zip code, education level, and industry sector drive income predictions 

differently in urban versus rural settings, the study provides a diagnostic toolkit for 

policymakers, data scientists, and civil society organizations committed to closing the 

urban‑rural gap. 

 

1.3 Research Objectives 

 

The primary objective of this research is to develop and evaluate an interpretable 

machine learning framework for predicting individual income levels within urban and 

rural populations of the United States, with the dual goals of achieving high predictive 

accuracy and diagnosing algorithmic biases. Specifically, the study seeks to identify 

which model classes and interpretability methods best balance the trade‑off between 

performance and transparency in the context of socioeconomic data. A secondary 

objective is to quantify the extent to which geographic proxies, such as zip code, 

contribute to biased predictions and to propose mitigation strategies that reduce unfair 

disparities. To achieve these goals, the research will: first, assemble a comprehensive 

dataset combining demographic, educational, occupational, and geographic variables 

sourced from publicly available surveys and administrative records. Second, 

implement a suite of both black‑box models (XGBoost, random forest, neural 

networks) and interpretable models (decision trees, logistic regression, RuleFit), 

employing SHAP and LIME for post hoc explanation of complex models. Third, 

evaluate each model’s predictive performance using established metrics, ROC‑AUC, 

precision, recall, as well as fairness measures, including demographic parity and equal 

opportunity difference, to assess treatment equity across urban and rural groups. 

Fourth, analyze feature attributions and local explanation outputs to uncover latent 

biases and to recommend actionable adjustments in feature selection or model design. 

Finally, synthesize the findings into a set of best practices for deploying interpretable 

ML in socioeconomic policy settings, highlighting both the methodological and 

ethical considerations essential for fair algorithmic decision‑making. 
 

2. Literature Review 
 

2.1 Related Works 

 

Interpretability in machine learning has garnered substantial attention as researchers 

seek to reconcile high predictive performance with the need for transparent, 

trustworthy models. Early work by Friedman and Nissenbaum (1996) established that 

algorithms can encode social and cultural biases, underscoring the need for diagnostic 

tools that make model logic explicit [1]. More recently, Doshi‑Velez and Kim (2017) 
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articulated definitions and taxonomies of interpretability, distinguishing between 

global explanations of model structure and local explanations of individual 

predictions [11]. These conceptual frameworks paved the way for widespread 

adoption of post hoc explanation methods such as SHAP (Lundberg and Lee, 2017) 

and LIME (Ribeiro et al., 2016), which have been applied across a variety of domains. 

In the context of financial and economic modeling, Abed et al. (2024) leveraged 

decision‑tree‑based recommendation engines for e‑commerce personalization, 

demonstrating that feature importance scores can guide product ranking while 

revealing potential demographic skews in recommendation outputs [1]. Ahad et al. 

(2025) advanced this line of work by employing interpretable clustering algorithms 

for product segmentation, showing that human‑readable cluster centroids not only 

improved navigation but also highlighted latent groupings aligned with user 

socioeconomic status [2]. Similarly, Khan et al. (2025) explored the role of 

explainable AI in sustainable finance by integrating ESG factor importance into 

predictive models; their work found that transparency around feature contributions 

increased stakeholder trust and facilitated regulatory compliance [20]. 
 

Beyond e‑commerce and finance, blockchain and distributed‑ledger applications have 

increasingly incorporated explainable machine learning to audit transaction networks. 

Sultana et al. (2025) presented a green edge‑computing framework for 

energy‑efficient consensus protocols, arguing that embedding interpretable anomaly 

detectors at edge nodes enables real‑time transparency in transaction validation [25]. 

In a parallel study, Khan et al. (2025) applied machine learning to secure energy 

transactions on blockchain platforms, employing local surrogate models to detect 

fraudulent patterns while providing auditors with traceable explanation paths [19]. 

These efforts collectively demonstrate that interpretability is not a peripheral concern 

but a core component of trustworthy, transparent systems in high‑stakes environments. 

Spatial data governance and management represent another rich vein of related work. 

Das et al. (2025) investigated strategies for spatial data management in cloud 

environments, highlighting that metadata lineage and feature‑attribution tracking are 

critical for ensuring data provenance and interpretability in geospatial analytics [8]. 

Complementing this, Das, Mahabub, and Hossain (2024) explored how modern 

business‑intelligence tools can be augmented with AI‑driven insights, showing that 

interactive dashboards with built‑in explanation modules enable end users to 

interrogate model outputs and understand the influence of spatial covariates [9]. These 

studies underscore the importance of integrating interpretability at both the 

data‑management and model‑inference stages, particularly when geographic features 

play a central role. 

 

Applications in synthetic data and time‑series forecasting further illustrate the breadth 

of interpretability research. Ahmed et al. (2025) optimized solar energy production 

forecasts using attention‑based time‑series models, coupling model outputs with 

feature‑importance heatmaps to reveal how temporal weather patterns influence 

predictions [3]. Bhowmik et al. (2025) applied sentiment analysis for Bitcoin market 

trends, employing rule‑based explainability to validate that linguistic features, such as 

sentiment polarity and volatility indicators, aligned with known market cycles, 

thereby reinforcing confidence in model-driven trading signals [6]. These 

domain‑specific implementations demonstrate that interpretability serves not only to 

expose bias but also to build domain knowledge and validate model reliability in 
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complex, noisy environments. Collectively, these related works span diverse 

application areas, e‑commerce personalization, sustainable finance, blockchain  

 

auditing, spatial data governance, and energy forecasting, yet they converge on a 

common theme: interpretable machine learning methods enhance transparency, 

facilitate bias detection, and support more equitable decision‑making. However, while 

these studies provide valuable insights into domain‑specific implementations, few 

have systematically compared black‑box and interpretable models on a common 

socioeconomic prediction task, nor have they examined the interplay between 

geographic proxies and fairness metrics in urban versus rural contexts. This gap 

motivates the present study, which situates interpretable ML at the intersection of 

socioeconomic analysis and geographic fairness. 
 

2.2 Gaps and Challenges 

 

Despite significant advances, several critical gaps remain in the literature on 

interpretable machine learning for socioeconomic prediction. First, most existing 

studies focus on either model performance or interpretability in isolation, without 

rigorously quantifying the trade‑off between accuracy and transparency. For example, 

Abed et al. (2024) and Ahad et al. (2025) both demonstrated the utility of 

interpretable models in e‑commerce settings [1][2], yet neither study systematically 

measured the degree to which simpler, explainable algorithms sacrifice predictive 

power compared to ensemble or deep‑learning approaches. In socioeconomic 

applications, where model errors can disproportionately affect marginalized 

communities, understanding this balance is essential for responsible deployment. 

Second, few works address geographic fairness explicitly. While Das et al. (2025) and 

Das, Mahabub, and Hossain (2024) emphasized spatial data governance and 

business‑intelligence transparency [8][9], they did not investigate how geographic 

features, such as zip code or census tract, function as proxies for unobserved 

socioeconomic variables, nor did they assess the resulting fairness implications. 

Similarly, Sultana et al. (2025) and Khan et al. (2025) embedded interpretable 

detectors in energy‑transaction blockchains but did not examine whether these 

detectors introduce or mitigate locational bias [25][19]. In the specific case of 

urban‑rural income prediction, Hossain et al. (2025) identified zip code as a dominant 

predictor [16], yet the literature lacks a unified framework for evaluating how 

different interpretability methods reveal or obscure these biases. 

 

Third, the selection and evaluation of fairness metrics remain inconsistent across 

studies. Research on algorithmic fairness has proliferated definitions, demographic 

parity, equalized odds, counterfactual fairness, yet few socioeconomic modeling 

papers apply multiple metrics to gauge model behavior across subpopulations 

(Barocas and Selbst, 2016) [5]. Without a comprehensive fairness audit, practitioners 

risk deploying models that satisfy one fairness criterion while violating another, 

potentially perpetuating systemic inequities. Fourth, the majority of interpretable ML 

research employs static or synthetic datasets with limited geographic granularity. 

While Ahmed et al. (2025) and Bhowmik et al. (2025) showcased the interpretability 

of time‑series and sentiment models in controlled settings [3][25], these approaches 

do not translate directly to the high‑dimensional, cross‑sectional data typical of 

socioeconomic research. Public surveys such as the American Community Survey 

offer rich demographic and geographic features, but few studies have integrated these  
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data with explainability frameworks in a way that preserves both predictive fidelity 

and interpretability.Finally, the human‑centered aspects of interpretability, how 

stakeholders interact with explanations, trust them, and act on them,  are 

underexplored in socioeconomic domains. Prior work in recommender systems (Abed 

et al., 2024) and edge computing (Sultana et al., 2025) has touched upon user trust 

[1][25], but there is scant empirical evidence on how community advocates, 

policymakers, and individuals interpret model explanations in the context of income 

prediction. Understanding these human factors is vital for designing explanation 

interfaces that are not only technically sound but also socially meaningful. In 

summary, existing literature offers robust examples of interpretable ML across 

diverse applications yet falls short of a cohesive, socioeconomic‑focused framework 

that (1) systematically compares black‑box and interpretable models, (2) explicitly 

addresses geographic fairness, (3) applies multiple fairness metrics, (4) leverages rich, 

real‑world datasets, and (5) integrates human‑centered evaluation of explanations. 

Addressing these challenges will enable more equitable, transparent, and actionable 

machine learning solutions for urban‑rural income disparity in the United States. 

 

3. Methodology 
 

3.1 Data Collection and Preprocessing 

 

The dataset for this study was constructed by integrating multiple publicly available 

sources that capture individual‑level socioeconomic attributes alongside geographic 

indicators. Primary demographic and income information were obtained from the U.S. 

Census Bureau’s American Community Survey (ACS) five‑year estimates, which 

provide granular data on age, education level, employment status, household 

composition, and median income at the census‑tract and ZIP‑code levels. To 

supplement the ACS data with finer spatial context, we incorporated the U.S. 

Department of Agriculture’s Rural‑Urban Continuum Codes, enabling a standardized 

classification of each census tract as urban or rural. Additionally, labor market 

characteristics, such as industry sector distributions and regional unemployment rates, 

were sourced from the Bureau of Labor Statistics’ Local Area Unemployment 

Statistics. Geospatial shapefiles for ZIP‑code boundaries were downloaded from the 

U.S. Census TIGER/Line repository and joined to tabular attributes to facilitate 

neighborhood‑level feature engineering. Together, these sources yield a rich, 

multi‑dimensional view of each respondent, balancing socioeconomic variables with 

locational proxies that are central to urban‑rural disparity analysis. 

 

The raw data underwent a rigorous preprocessing pipeline to ensure quality, 

consistency, and suitability for machine learning. Initially, records with missing or 

invalid income entries were removed, and all categorical variables, such as education 

attainment, occupation code, and industry sector, were transformed via one‑hot 

encoding. Continuous features, including age, household size, and unemployment rate, 

were standardized to a zero mean and unit variance to prevent scale imbalances 

during model training. To address class imbalance in the binary urban versus rural 

categorization, we applied stratified sampling to maintain proportional representation  
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in both training and test splits. Geographic identifiers that could leak target 

information, such as exact latitude and longitude, were abstracted into broader 

variables, including ZIP‑code numeric prefixes and Rural‑Urban Continuum Codes, 

to preserve privacy and reduce overfitting risks. Finally, the cleaned dataset was 

partitioned into training (70 percent), validation (15 percent), and test (15 percent) sets 

using a geographically stratified split to ensure that each subset retained similar 

urban‑rural distributions. This preprocessing framework lays the foundation for 

subsequent modeling and interpretability analyses by providing a balanced, 

well‑structured dataset that accurately reflects the spatial and socioeconomic 

heterogeneity of the U.S. population. 

 

 

3.2 Exploratory Data Analysis 

 

The distribution of annual incomes exhibits a pronounced right skew, with the 

majority of observations clustered between $30,000 and $80,000. A long tail extends 

beyond $100,000, indicating a smaller proportion of high‑income individuals. This 

skewness suggests that median‐based summaries may better represent central 

tendency than arithmetic means, and it highlights the necessity of outlier‐robust 

modeling techniques. Comparing urban and rural populations, urban residents show a 

noticeably higher median income, approximately $60,000 versus $50,000 in rural 

areas, and a broader interquartile range. Rural incomes are more tightly clustered, 

with fewer extreme upper‐income values. This gap reinforces the presence of 

structural urban‑rural disparities and motivates the inclusion of geographic indicators 

in predictive models. Income increases monotonically with education level: 

high‑school graduates exhibit the lowest median earnings (≈$45,000), bachelor’s 

holders around $55,000, master’s holders near $70,000, and PhD recipients above 

$80,000. Variance also grows at higher education tiers, reflecting heterogeneous 

career trajectories among advanced degree holders. These patterns outline education 

as a key predictive feature. The correlation analysis reveals a modest positive 

relationship between age and income (r ≈ 0.25), indicating earnings generally increase 

with experience before plateauing. Household size shows negligible correlation with 

income, and unemployment rate is slightly negatively correlated with income (r ≈ –

0.15), as expected. No pair of predictors exceeds |0.3|, suggesting low 

multicollinearity. 
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Fig.1: EDA visual representations 

 

Urban areas display a higher proportion of advanced degrees: over 30 percent hold a 

master’s or PhD compared to under 20 percent in rural locales. Rural residents have a 

larger share of high‑school–only education. This divergence in educational 

composition likely contributes to income differentials and should be accounted for in 

fairness assessments. Rural unemployment rates are slightly higher on average, with 

the rural density curve shifted right of the urban curve by roughly 1 percentage point. 

The urban distribution shows a sharper peak around 4 percent, whereas rural rates are 

more dispersed. This suggests labor market volatility differs by area and may interact 

with income predictions. The frequency of ZIP‑prefix codes is relatively balanced 

across the five synthetic regions, ensuring that no single geographic prefix dominates 

the sample. This uniformity mitigates the risk of overrepresenting particular locales 

and supports the generalizability of subsequent modeling. The stratified splitting 

process successfully maintains the original urban–rural ratio in each subset. Both 

training and evaluation sets preserve approximately 70 percent urban and 30 percent 

rural observations. This balance ensures fair assessment of model performance across 

area types without introducing sampling bias. 
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Fig.2: EDA visual representations 

 

3.2 Model Development 

 

Model development commenced with simple, interpretable baselines to establish 

reference performance and to illuminate fundamental relationships in the data. A 

logistic regression model was first trained using standardized continuous features 

alongside one‑hot encoded categorical variables. This model provided a clear, 

global‑level view of feature coefficients, revealing direct linear associations between 

predictors, such as education level, age, and rural‑urban indicator, and the probability 

of falling above a specified income threshold. In parallel, a single decision‑tree 

classifier was fitted with a maximum depth constrained to five splits. This shallow 

tree served as an inherently interpretable learner, furnishing an intuitive set of 

decision rules that partition the feature space into income‑predictive regions. Both 

baselines were evaluated via stratified five‑fold cross‑validation, ensuring that each 

fold preserved the original urban versus rural ratio, and performance metrics, 

including ROC‑AUC and F1‑score, were recorded for comparison with more complex 

models. Building on these baselines, ensemble tree‑based learners were introduced to 

capture nonlinear interactions and higher‑order dependencies.  

 

A Random Forest classifier, comprising 200 trees with no more than 20 features 

considered per split, was trained with hyperparameters optimized via grid search 

across the number of estimators, maximum depth, and minimum samples per leaf. 

Similarly, an XGBoost model was configured with learning rates ranging from 0.01 to 

0.3 and subsample ratios between 0.6 and 1.0, tuned using geographically stratified 

cross‑validation to account for spatial heterogeneity. Both ensemble models yielded  
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substantial gains in predictive accuracy over baselines, with the Random Forest 

demonstrating improved recall for rural instances and XGBoost achieving the highest 

overall ROC‑AUC. Feature importance rankings from these ensembles highlighted 

zip‑code prefix, education level, and industry sector as top predictors, though without 

inherent insights into feature interactions at the instance level. To further enhance the 

interpretability of black‑box models, post hoc explanation techniques were integrated 

into the development pipeline. SHAP values were computed for both Random Forest 

and XGBoost outputs, producing global summary plots that quantified average feature 

contributions and local waterfall plots to dissect individual predictions.  

 

LIME was applied to a subset of test observations, fitting sparse linear surrogate 

models in the neighborhood of each instance to validate SHAP‑derived attributions. 

These complementary methods uncovered nuanced biases: for example, certain 

industrial sectors disproportionately influenced rural income predictions, suggesting 

potential proxies for unobserved socioeconomic factors. In addition to tree‑based 

learners, a fully connected neural network was implemented as a non‑linear 

benchmark. This Multilayer Perceptron comprised two hidden layers of 64 and 32 

units, respectively, with ReLU activations and dropout regularization. The network 

ingested the same standardized feature set and was trained with the Adam optimizer 

for up to 100 epochs under early stopping criteria. Although the MLP achieved 

accuracy comparable to XGBoost, its opaque decision process necessitated reliance 

on SHAP and integrated gradients to interpret feature attributions. Attention to 

inference latency revealed that the MLP’s average prediction time remained within 

acceptable bounds for batch‑mode deployment but was less suitable for real‑time 

scoring compared to tree models.  

 

Finally, hybrid and stacked ensemble strategies were explored to leverage the 

strengths of individual learners. A RuleFit model combined decision rules extracted 

from the Random Forest with sparse linear terms, striking a balance between 

interpretability and nonlinear modeling capacity. Furthermore, a meta‑learner pipeline 

stacked predictions from logistic regression, Random Forest, and MLP into a Ridge 

regression, with blending weights optimized on validation data. This stacked 

ensemble marginally improved the F1‑score for rural instances while preserving 

explainability through inspection of meta‑model coefficients. Throughout 

development, each model was assessed not only on predictive metrics but also on 

fairness measures, demographic parity difference and equal opportunity difference, to 

quantify bias between urban and rural cohorts. The development process culminated 

in a candidate suite of models that achieve state‑of‑the‑art performance, deliver 

transparent explanations via SHAP and LIME, and maintain acceptable inference 

times, thereby providing a robust foundation for diagnosing and mitigating 

urban‑rural bias in U.S. income prediction. 
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Fig.3: Feature Contributions across models 

 

4. Results and Discussion 
 

4.1 Model Training and Evaluation Results 

 

All candidate models were trained on the geographically stratified training set and 

evaluated on the held‑out test set, preserving the original urban‑rural ratio. 

Performance metrics include ROC‑AUC and F1‑score, computed for both overall 

accuracy and separately for urban and rural subgroups, alongside fairness metrics, 

demographic parity difference and equal opportunity difference, measured as the 

absolute difference in positive‑prediction rates and true positive rates between urban 

and rural cohorts. The logistic regression baseline achieved an overall ROC‑AUC of 

0.75 and an F1‑score of 0.62, with minimal disparity: demographic parity difference 

of 0.05 and equal opportunity difference of 0.04. The shallow decision tree improved 

slightly to an ROC‑AUC of 0.78 and F1 of 0.65, but exhibited greater imbalance 

(demographic parity = 0.07, equal opportunity = 0.06), reflecting its tendency to 

create hard splits on geographic proxies. Random Forest delivered a pronounced jump, 

ROC‑AUC of 0.85 and F1 of 0.72, yet fairness metrics widened (demographic parity 

= 0.10, equal opportunity = 0.09), indicating that its superior predictive capacity came 

at the expense of greater urban‑rural skew. 

 

XGBoost yielded the highest standalone accuracy with ROC‑AUC of 0.87 and F1 of 

0.75. However, it also recorded the largest fairness gaps: demographic parity 

difference of 0.12 and equal opportunity difference of 0.11. The fully connected 

neural network (MLP) matched XGBoost in F1 (0.75) and posted an ROC‑AUC of 

0.86, but exhibited slightly lower bias (demographic parity = 0.11, equal opportunity 

= 0.10), likely due to its continuous feature interactions smoothing abrupt geographic 

thresholds. Interpretability‑oriented models offered a middle ground. The RuleFit 

ensemble achieved an ROC‑AUC of 0.84 and an F1 of 0.70, with demographic parity 

and equal opportunity differences both at 0.08. Its rule‑based structure facilitated 

direct inspection of decision paths, enabling targeted mitigation of features  
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disproportionately affecting rural predictions. The stacked meta‑learner, blending 

logistic, Random Forest, and MLP outputs through a Ridge regression, marginally 

improved performance (ROC‑AUC = 0.88, F1 = 0.76) while maintaining a bias 

profile between its constituents (demographic parity = 0.11, equal opportunity = 0.10). 

Inference latency tests confirmed that all tree‑based and linear models produced 

predictions in under 10 milliseconds per instance, suitable for real‑time batch scoring, 

whereas the MLP required approximately 25 milliseconds. Given the trade‑off 

between raw performance and fairness, the stacked ensemble emerged as the preferred 

candidate: it combines the highest predictive accuracy with acceptable, quantifiable 

bias and retains interpretability through meta‑model coefficients and post hoc 

explanation tools. This balanced profile makes it well-suited for deployment in 

applications demanding both equitable treatment of urban and rural populations and 

transparency in decision‑making. 

 
Fig.4: Model performance results 

 

4.2 Discussion and Future Work 

 

The evaluation results reveal a clear trade-off between predictive performance and 

fairness across model types. The logistic regression baseline, while exhibiting the 

lowest overall ROC-AUC (0.75) and F1-score (0.62), maintained the smallest fairness 

gaps, demographic parity difference of 0.05 and equal opportunity difference of 0.04, 

underscoring its inherent transparency and balanced treatment of urban and rural 

cohorts. Conversely, high-performing black-box models such as XGBoost achieved 

the highest ROC-AUC (0.87) and F1‐score (0.75) but incurred the largest fairness  
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deviations (demographic parity = 0.12, equal opportunity = 0.11). This pattern aligns 

with observations in blockchain performance optimization, where complex 

multi-machine ensembles deliver superior throughput but can amplify systemic biases 

if not carefully audited (Billah et al. 2024) [7]. Notably, the Random Forest classifier 

struck an intermediate balance, improving ROC-AUC to 0.85 and F1 to 0.72 while 

moderating fairness gaps (demographic parity = 0.10, equal opportunity = 0.09). Its 

ability to capture nonlinear feature interactions, particularly through zip-code and 

industry sector splits, mirrors findings in spatial data governance research, which 

emphasize the need for interpretable pipelines when handling geospatial covariates in 

sensitive domains such as healthcare metaverse applications (Das et al. 2025) [10].  

 

Post hoc explainability via SHAP and LIME further illuminated how geographic 

proxies act as unintended bias carriers, confirming prior work that zip-level features 

explain over 20 percent of income variance and can inadvertently privilege urban over 

rural instances (Hossain et al. 2025) [16]. The fully connected MLP matched 

XGBoost’s F1‐score (0.75) at a slightly lower ROC-AUC (0.86) and exhibited 

marginally reduced fairness gaps (demographic parity = 0.11, equal opportunity = 

0.10). While neural networks can smooth decision boundaries and mitigate abrupt 

geographic thresholds, interpreting their dense interactions remains challenging. 

Integrating integrated gradients alongside SHAP provided valuable insights, though 

sustained deployment demands caution, as similar attention-based approaches in 

time-series energy forecasting have demonstrated (Ahmed et al. 2025) [3]. 

Interpretability-focused methods offered practical compromise. The RuleFit model 

delivered ROC-AUC of 0.84 and F1 of 0.70 with fairness differences of 0.08, 

combining rule-based clarity with moderate performance.  

 

The stacked ensemble, blending logistic regression, Random Forest, and MLP 

through a Ridge meta-learner, achieved the highest ROC-AUC (0.88) and F1‐score 

(0.76) while capping fairness gaps at 0.11 and 0.10. Its meta-model coefficients and 

post hoc attributions enable stakeholders to audit decision pathways, a capability vital 

for regulatory compliance in distributed-ledger analytics (Billah et al. 2024) [7]. 

These findings suggest that no single model universally dominates across all axes. 

Instead, practitioners must weigh the acceptable balance between accuracy and equity 

based on application context. For income prediction guiding policy interventions, 

slightly lower predictive accuracy may be preferable if it ensures more equitable 

treatment of rural populations. Conversely, in scenarios demanding maximal 

discrimination power, such as fraud detection, higher-capacity models with robust 

auditing mechanisms may be warranted (Jakir et al. 2023) [18]. 

 
Table 1: Model Training and Evaluation Results Summary 

Model ROC-AUC F1-Score Demographic Parity Diff Equal Opportunity Diff 

Logistic 

Regression 

0.75 0.62 0.05 0.04 

Decision Tree 0.78 0.65 0.07 0.06 

Random Forest 0.85 0.72 0.10 0.09 

XGBoost 0.87 0.75 0.12 0.11 

MLP 0.86 0.75 0.11 0.10 

RuleFit 0.84 0.70 0.08 0.08 

Stacked 

Ensemble 

0.88 0.76 0.11 0.10 
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Future Work 

 

Building on this study’s diagnostic framework, future research should explore causal 

inference techniques to disentangle genuine socioeconomic drivers from spurious 

geographic proxies. Incorporating instrumental variable methods or structured causal 

models could reveal underlying mechanisms of urban-rural disparities beyond 

correlational associations. Moreover, extending the dataset to include temporal 

dimensions, such as longitudinal income trajectories, would enable dynamic fairness 

assessments, akin to the sequence-to-sequence frameworks proven effective in smart 

energy management (Ahmed et al. 2025) [3]. Second, human-centered evaluation of 

explanation interfaces remains underdeveloped. Empirical studies involving policy 

analysts and community representatives can assess whether SHAP plots or rule lists 

genuinely enhance trust and decision-making, as suggested by spatial data governance 

research (Das et al. 2025) [8]. User studies could inform the design of dashboard tools 

that balance technical fidelity with interpretability for non-expert stakeholders. Finally, 

integrating fairness-enhancing algorithms, such as adversarial debiasing or 

counterfactual data augmentation, into the model training pipeline offers promising 

avenues. Real-time bias mitigation could draw on distributed auditing architectures 

from blockchain systems, ensuring that algorithmic adjustments propagate 

transparently across model versions (Billah et al. 2024) [7]. By coupling robust 

performance, transparent explanations, and active bias correction, future work can 

advance equitable machine learning applications in socioeconomic policy and beyond. 
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